Implements the standard and non standard probability density function (pdf) and cumulative distribution function (cdf) for normal distributions.
More...
List of all members.
Static Public Member Functions |
static double | pdf (double mean, double variance, double x) |
| The probabability density function at point x of the normal distribution.
|
static double | cdf1 (double x) |
| Approximation of the standard cumulative density function of the normal distribution.
|
static double | erf (double x) |
| Approximation of the error function according to Winitzki.
|
static double | cdf (double mean, double variance, double x) |
| Approximation of the cumulative density function of the normal distribution.
|
static void | main (String args[]) |
| test: Tests for Normal Distributions...
|
Static Public Attributes |
static final double | b0 = 0.2316419 |
| Parameter for Abramovitz Stegun Method.
|
static final double | b1 = 0.319381530 |
| Parameter for Abramovitz Stegun Method.
|
static final double | b2 = -0.356563782 |
| Parameter for Abramovitz Stegun Method.
|
static final double | b3 = 1.781477937 |
| Parameter for Abramovitz Stegun Method.
|
static final double | b4 = -1.821255978 |
| Parameter for Abramovitz Stegun Method.
|
static final double | b5 = 1.330274429 |
| Parameter for Abramovitz Stegun Method.
|
Detailed Description
Accuracies:
-
The probability density function (pdf) is accurate to double precision.
-
The cumulative density function (cdf) is approximated numerically without iteration for maximum efficiency and is only accurate to five or six significant figures.
Uses approximations by Abramovitz and Stegun http://www.math.sfu.ca/~cbm/aands/page_932.htm and Sergeij Winitzki http://www.scribd.com/doc/82414963/Winitzki-Approximation-to-Error-Function
- Author:
- Ruediger Ruwe <ruediger.ruwe @ rwth-aachen.de>
- Version:
- 1.0
- Since:
- 10.08.2012
Member Function Documentation
- Parameters:
-
- Returns:
- pdf(x)
The accuracy could be higher (about 5-6 significant figures) but there are no iterations needed which will provide a decent efficiency.
- Parameters:
-
- Returns:
- erf(x)
Uses the approximations used by ideation.NormalDistribution#cdf1
For test purposes you can enter the package in this class and check the output with other calculations.
- Parameters:
-
mean | mean |
variance | variance (sigma^2) |
x | point of interest |
- Returns:
- pdf(x)
The documentation for this class was generated from the following file: